

D B POWER LIMITED

CIN: U40109MP2006PLC019008

Corporate Office: 3rd Floor, Naman Centre, C-31, 'G' Block, Opp. Dena Bank, Bandra-Kurla Complex, Bandra (E), Mumbai – 400 051 Tel No +91-22-3930 6000 Fax No +91-22-3930 6008

Annexure – 1 : Comments from DB Power

	nexure – 1			rom D	B Powe	r								
Sl	Section	Ren	narks											
1	Escalation Rate for domestic coal (for Evaluation)	subsproof mat Sec disc esca	The methodology of computing the escalation for the purpose of payment has evolved substantially to reflect more closely the actual escalation witnessed in grades of coal primarily procured by power generation companies, which is reflected in the Order dated 18.10.2019 in the matter of Methodology for Compilation of Coal Price Index applicable for Power Sector. While CERC envisages to begin publishing the escalation rates for evaluation, years after discontinuation of the same in 2014, it may be necessary to adopt a similar approach to ensure the escalation reflects G10- G14 viz. grades of coal that is mostly consumed by power generation, or at least the range of G7- G14 grades, reflected in the above-mentioned Order.											
		reas	sonable g ent that t	ground to a	bility of time series data on CERC coal price index as a constraint may not be round to rely on a methodology which is outdated and whose outcome is flawed to the se said WPI (for non-coking coal of constituting 17 different grades) is far from the tnessed in G10- G14 or G7- G14 grades of coal									
		Under the new series (Base Year 2011-12), Non-Coking Coal has been trifurcated into the following categories as separate items based on Gross Calorific Value (GCV) grades.												
		a. Non-Coking Coal G1 to G6 [GCV >5500 Kcal/kg.]												
		b. Non-Coking Coal G7 to G14 [GCV 3100 Kcal/kg to 5500 Kcal/kg]												
		c. Non-Coking Coal G15 to G17 [GCV < 3100 Kcal/kg.]												
In addition, the escalation factor to be used for evaluation show and more reflective of the escalation in the actual grade of comown index based on the price of non-coking coal applicable for 2018 onwards can be the best option to compute the escalation the recent price trends of coal. Taking a historical price trend of coal prices were influenced by the GAP in demand and supply coal producer, the Coal India is already past the half way to accept a 2023 – 24 and by operationalization of commercial mines, coal significantly. Keeping the above and significant reduction in the energy transition from coal to renewable (Ref Table for diminal annual escalation of 7.51 % based on historical trend is likely also will lead to undue inflated Levellised Tariff for bidders we power under the subject mentioned scheme.							mmodity or power on as the s of coal for y of dome achieve 1 l oal availab thermal p nishing TI y to be wro with dom	being consector ava ame is nea or last 12 y estic coal; Bn Productility is expower gene mermal shaping by a latestic coal	sumed. CI ilable from any reflect wears whe now, the notion Targe pected to iteration due are), the prage margibased alte	ERC's n April tive to rein major et by FY mprove e to rojected in and rnate				
		UoM	2012	2013	2014	2015	2016	2017	2018	2019	2020	CAGR		
	Production	MMT	435.84	452.211	462.42	494.238	538.754	554.14	567.365	606.89	602.138	3.66%		
	ftake to Power	MMT	312.05	345.32	354.62	385.852	407.648	428.294	453.473	491.247	465.678	4.55%		
	nst Capacity (Thermal)	MW	131603	151531	168255	188898	210676	218330	222906	226279	230600	6.43%		
(0	Plant Load Factor (Conventional)		73.3	69.9	65.6	64.46	62.29	59.88	60.67	61.07	55.99	-2.95%		
Ui	Effective Cap. Utiil. (Thermal)		96465	105920.2	110375.3	121763.7	131230.1	130736	135237.1	138188.6	129112.9	3.29%		
	Gen. by Coal/ Lignite Stations		6.69	5.71	5.41	5.39	5.12	5	5.07	5.14	4.19	-5.07%		

D B POWER LIMITED

CIN: U40109MP2006PLC019008

Corporate Office: 3rd Floor, Naman Centre, C-31, 'G' Block, Opp. Dena Bank, Bandra-Kurla Complex, Bandra (E), Mumbai – 400 051 Tel No +91-22-3930 6000 Fax No +91-22-3930 6008

2	Section 3	Bids for supply of thermal power historically have stipulated source of coal i.e. domestic or import for the purpose of evaluation. As the GoI making efforts towards ZERO import in coal, evaluation and selection may be done on separate buckets for import and domestic coal-based bidders.
3	Section 9: Discount Rate for Bid Evaluation	Equity Market Risk Premium (ERP) of 2.47% appears to be extremely low based on RFR of 6.99% and Sensex values for the past eleven years have been used to arrive at rate of return on the market portfolio for the past 10 years. It is requested if the time period and date can be disclosed for better understanding of the methodology.